Refine Your Search

Topic

Author

Search Results

Technical Paper

Calculating Vehicle Side Structure Stiffness from Crash Test Data: Effects of Impactor Characteristics

2020-04-14
2020-01-0640
This research examines the effects of impactor characteristics on the calculated structural stiffness parameters A and B for the struck sides of late-model vehicles. This study was made possible by crash testing performed by the National Highway Traffic Safety Administration involving side impacts of the same vehicle line with both a rigid pole and with a moving deformable barrier. Twenty-nine crash test pairs were identified for 2018 model-year vehicles. Of 60 total tests, 49 were analyzed. Test data for 19 vehicles impacted in both modes resulted in A and B values considered to be valid. Classifying these 19 vehicles according to the categories defined by Siddall and Day, only Class 2 multipurpose vehicles were represented by enough vehicles (10) to search for trends within a given vehicle category. For these vehicles, more scatter in the results was observed in both A and B values for the MDB impacts compared to the pole impacts.
Technical Paper

Evaluation of Laminated Side Glazing and Curtain Airbags for Occupant Containment in Rollover

2020-04-14
2020-01-0976
By their nature as chaotic, high-energy events, rollovers pose a high risk of injury to unrestrained occupants, in particular through exposure to projected perimeter contact and ejection. While seat belts have long been accepted as a highly effective means of retaining and restraining occupants in rollover crashes, it has been suggested that technologies such as laminated safety glazing or rollover-activated side curtain airbags (RSCAs) could alternatively provide effective occupant containment. In this study, a full-scale dolly rollover crash test was performed to assess the occupant containment capability of laminated side glazing and RSCAs in a high-severity rollover event. This allowed for the analysis of unrestrained occupant kinematics during interaction with laminated side glazing and RSCAs and evaluation of failure modes and limitations of laminated glazing and RSCAs as they relate to partial and complete ejection of unrestrained occupants.
Technical Paper

The Effect of Crash Severity and Structural Intrusion on ATD Responses in Rear-End Crashes

2020-04-14
2020-01-1224
This study assesses vehicle and occupant responses in six vehicle-to-vehicle high-speed rear impact crash tests conducted at the Exponent Test and Engineering Center. The struck vehicle delta Vs ranged from 32 to 76 km/h and the vehicle centerline offsets varied from 5.7 to 114 cm. Five of the six tests were conducted with Hybrid III ATDs (Anthropometric Test Device) with two tests using the 50th male belted in the driver seat, one test with an unbelted 50th male in the driver seat, one test with a 95th male belted in the driver seat, and one with the 5th female lap belted in the left rear seat. All tests included vehicle instrumentation and three tests included ATD instrumentation. The ATD responses were analyzed and compared to corresponding IARVs (injury assessment reference values). Ground-based and onboard vehicle videos were synchronized with the vehicle kinematic data and biomechanical responses.
Technical Paper

Evaluation of Occupant Kinematics during Low- to Moderate-Speed Side Impacts

2020-04-14
2020-01-1222
While nearly 50 percent of occupants in side-impact collisions are in vehicles that experience a velocity change (delta-V) below 15.0 kph (9.3 mph), full scale crash testing research at these delta-Vs is limited. Understanding occupant kinematics in response to these types of side impacts can be important to the design of side-impact safety countermeasures, as well as for evaluating potential interactions with interior vehicle structures and/or with other occupants in the vehicle. In the current study, two full-scale crash tests were performed utilizing a late-model, mid-size sedan with disabled airbags. The test vehicle was impacted by a non-deformable moving barrier on the driver side at an impact speed of 10.0 kph (6.2 mph) in the first test and then on the passenger side at an impact speed of 21.6 kph (13.4 mph) in the second test, resulting in vehicle lateral delta-Vs of 6.1 kph (3.8 mph) and 14.0 kph (8.7 mph), respectively.
Technical Paper

Accident Statistical Distributions from NASS CDS - An Update

2020-04-14
2020-01-0518
The National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) contains an abundance of field crash data. As technology advances and the database continues to grow over the years, the statistical significance of the data increases and trends can be observed. The purpose of this paper is to provide a broad-based, up-to-date, reference resource with respect to commonly sought-after crash statistics. Charts include up-to-date crash distributions by Delta-V and impact direction with corresponding injury severity rates. Rollover data is also analyzed, as well as historical trends for injury severity, belt usage, air bag availability, and the availability of vehicle safety technology.
Technical Paper

The Effect of FMVSS 301R on Vehicle Structure in Rear Impact

2020-04-14
2020-01-1226
Vehicle structures are designed to manage impact forces and transfer crash energy, in addition to their primary purpose of connecting all the vehicle powertrain, suspension, steering, HVAC, electronics, occupant accommodation, and weatherproofing. With the introduction of new rear impact requirements, the design of rear structures has evolved and the use of high strength steel has increased. This study objective was to assess the effect of new FMVSS 301 requirements on vehicle responses. NHTSA conducted 33 offset rear crash tests at 80 km/h with vehicles that pre-dated the newer FMVSS 301R requirements and 88 with vehicles that complied with the newer requirements, with a 2009-2015 model year range. The vehicles were grouped by size and the permanent crush was tabulated. Overall, the struck-side maximum crush decreased in the newer model vehicles. Seven matches with pre and post 301R were identified on the same make and model vehicle of different generations.
Technical Paper

Injury Rates by Crash Severity, Belt Use and Head Restraint Type and Performance in Rear Impacts

2020-04-14
2020-01-1223
This study assesses the exposure distribution and injury rate (MAIS 4+F) to front-outboard non-ejected occupants by crash severity, belt use and head restraint type and damage in rear impacts using 1997-2015 NASS-CDS data. Rear crashes with a delta V <24 km/h (15 mph) accounted for 71% of all exposed occupants. The rate of MAIS 4+F increased with delta V and was higher for unbelted than belted occupants with a rate of 11.7% ± 5.2% and 6.0% ± 1.5% respectively in 48+ km/h (30 mph) delta V. Approximately 12% of front-outboard occupants were in seats equipped with an integral head restraint and 86% were with an adjustable head restraint, irrespective of crash severity. The overall injury rate was 0.14% ± 0.05% and 0.22% ± 0.06%, respectively. It was higher in cases where the head restraint was listed as “damaged”. Thirteen cases involving a lap-shoulder belted occupant in a front-outboard seat in which “damage” to the adjustable head restraint was identified.
Technical Paper

Update on Second-Row Children Responses in Rear and Frontal Crashes with a Focus on the Potential Effect of Stiffening Front Seat Structures

2020-04-14
2020-01-1215
NHTSA has recently been petitioned to address the protection of second-row children in rear crashes due front seatback performance. The protection of children is important. However, it is more complex than assessing front seat performance in rear impacts. Viano, Parenteau (2008 [1]) analyzed cases of serious-to-fatally injured (MAIS 3+F) children up to 7 years old in the second row in rear impacts involving 1990+ model year vehicles using 1997-2005 NASS-CDS. They observed that intrusion was an important factor pushing the child forward into the back of the front seat, B-pillar or other front structure. To help assess whether stiffening the front seats would be beneficial for second-row child safety, the 2008 study was updated using more recent data and model year vehicles. In the present study, 1997-2015 NASS-CDS data were analyzed for serious-to-fatally (MAIS 3+F) injured 0- to 7-year old children in the second row with 1994+ model year vehicles.
Technical Paper

The Effects of Active and Conventional Head Restraints on Front Seat Occupant Responses in Rear Impacts

2020-04-14
2020-01-1217
This study assesses front seat occupant responses in rear impacts with active head restraints (AHR) and conventional head restraints (CHR) using field accident data and test data from the Insurance Institute for Highway Safety (IIHS). 2003-2015 NASS-CDS data were analyzed to determine injury rates in 1997+ model year seats equipped with AHR and CHR. Results indicated that less than 4% of occupants were in seats equipped with AHR. Crashes of delta-V <24 km/h accounted for more than 70% of all exposed front seat occupants, irrespective of head restraint design. Rear crashes with a delta-V < 24 km/h included 35.6% fewer occupants who sustained a MAIS 1-2 injury overall and 26.4% fewer who sustained a MAIS 1-2 cervical injury in vehicles equipped with AHR compared to CHR. In IIHS 16 km/h rear sled tests, the biomechanical response of an instrumented BioRID was evaluated on seats with AHR and CHR. HIC15 and concussion risk were calculated from head acceleration data.
Technical Paper

An Evaluation of Near- and Far-Side Occupant Responses to Low- to Moderate-Speed Side Impacts

2020-04-14
2020-01-1218
Many side-impact collisions occur at speeds much lower than tests conducted by the National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS). In fact, nearly half of all occupants in side-impact collisions experience a change in velocity (delta-V) below 15 kph (9.3 mph). However, studies of occupant loading in collisions of low- to moderate-severity, representative of many real-world collisions, is limited. While prior research has measured occupant responses using both human volunteers and anthropometric test devices (ATDs), these tests have been conducted at relatively low speeds (<10 kph [<6.2 mph] delta-V). This study evaluated near- and far-side occupant response and loading during two side impacts with delta-V of 6.1 kph and 14.0 kph (3.8 mph and 8.7 mph).
Technical Paper

Improvements in Simulations of Aortic Loading by Filling in Voids of the Global Human Body Model

2020-03-31
2019-22-0021
Internal organ injuries of the chest are one of the leading causes of deaths in motor vehicle crashes. The issue of initial presence and dynamic formation of voids around the heart and aorta is addressed to improve kinematics, force interaction and injury risk assessment of these organs of the Global Human Body Model. Steps to fill the voids are presented.
Technical Paper

Effects of Innovation in Automated Vehicles on Occupant Compartment Designs, Evaluation, and Safety: A Review of Public Marketing, Literature, and Standards

2019-04-02
2019-01-1223
In recent years, the discussion around the advent of highly automated vehicles has shifted from “if” to “when.” Commercially available vehicles already incorporate automated vehicle (AV) technologies of varying capability, and the eventual transition to fully automated systems, at least within certain predefined Operational Design Domains, is largely considered inevitable. While the full ramifications of this shift and the eventual depreciation of human driver control are still under intense debate, there is broad agreement on one issue -the advent of driverless systems will remove several constraints on the design of vehicle interior spaces, creating the opportunity for innovation. Even at this early stage, ambitious design concepts of purpose specific vehicles - mobile gyms, offices, bedrooms - have been proposed. More grounded designs, such as rotating passenger seats, have also been put forward.
Journal Article

Passenger Vehicle Dynamic Response and Characterization of Side Structure during Low- to Moderate-Speed Side Impacts

2019-04-02
2019-01-0420
A significant portion of real-world passenger vehicle side impacts occur at lower speeds than testing conducted by the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). Test data from low- to moderate-speed side impacts involving late-model passenger vehicles is limited, making the evaluation of vehicle impact response, occupant loading, and injury potential challenging. This study provides the results of low- to moderate-speed impact testing involving a late-model mid-size sedan. Two full-scale Non-Deformable Moving Barrier (NDMB) side impact crash tests were conducted at speeds of 6.2 mph (10.0 kph) and 13.4 mph (21.6 kph). Instrumentation on the late-model sedan used for the test series included tri-axis accelerometers and seat belt load cells.
Technical Paper

Head and Neck Loading Conditions over a Decade of IIHS Rear Impact Seat Testing

2019-04-02
2019-01-1227
Rear-end impacts are the most common crash scenario in the United States. Although automated vehicle (AV) technologies, such as frontal crash warning (FCW) and automatic emergency braking (AEB), are mitigating and preventing rear-end impacts, the technology is only gradually being introduced and currently has only limited effectiveness. Accordingly, there is a need to evaluate the current state of passive safety technologies, including the performance of seatbacks and head restraints. The objective of this study was to examine trends in head and neck loading during rear impact testing in new vehicle models over the prior decade. Data from 601 simulated rear impact sled tests (model years 2004 to 2018) conducted as a part of the Insurance Institute for Highway Safety (IIHS) Vehicle Seat/Head Restraint Evaluation Protocol were obtained.
Technical Paper

Evaluation of Occupant Kinematics in Low- to Moderate-Speed Frontal and Rear-End Motor Vehicle Collisions

2019-04-02
2019-01-1226
Low- to moderate-speed motor vehicle collisions are a common crash type and are sometimes associated with injury complaints. Understanding occupant motion (kinematics) in response to low- and moderate-speed motor vehicle collisions is important for evaluating occupant interactions with interior vehicle structures, including the restraint systems, with the ultimate goal of assessing injury potential. Furthermore, quantitative occupant kinematic data from full-scale crash testing of late-model passenger vehicles is limited for collisions at low- to moderate-speeds. The current study reports kinematic data from full-scale frontal and rear-end crash tests of late-model, mid-size sedans with delta-Vs ranging from 6.0 to 19.0 kph (3.7 to 11.8 mph) and 5.6 to 19.5 kph (3.5 to 12.1 mph), respectively. For each test vehicle, the motion of a Hybrid III 50th-percentile male anthropomorphic test device (ATD) restrained in the driver seat was recorded using high-speed onboard video.
Technical Paper

Passenger Vehicle Response and Damage Characteristics of Front and Rear Structures during Low- to Moderate-Speed Impacts

2019-04-02
2019-01-0415
A significant number of vehicle-to-vehicle collisions involve front-to-rear impacts at low- to moderate-speeds. While a variety of studies have been conducted since the 1990s involving fore-aft collisions, those discussing the response of late model passenger vehicles during progressively more severe impacts are limited. In this study, four inline, front-rear tests were conducted using two midsize sedans of the same make, model, and year. An instrumented Hybrid III 50th percentile-male Anthropomorphic Test Device (ATD) was located in the driver seat of each sedan and was restrained using the standard three-point seat belt system. Instrumentation on the vehicles included tri-axis accelerometers and seat belt load cells. For each test, the centerlines of the vehicles were aligned, and the striking vehicle impacted the stationary target vehicle at closing speeds of 4.6, 7.9, 13.5, and 20.9 mph (7.4, 12.7, 21.7, and 33.6 kph).
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Technical Paper

Lane-Keeping Behavior and Cognitive Load with Use of Lane Departure Warning

2017-03-28
2017-01-1407
Lane Departure Warning (LDW) systems, along with other types of Advanced Driver Assistance Systems (ADAS), are becoming more common in passenger vehicles, with the general aim of improving driver safety through automation of various aspects of the driving task. Drivers have generally reported satisfaction with ADAS with the exception of LDW systems, which are often rated poorly or even deactivated by drivers. One potential contributor to this negative response may be an increase in the cognitive load associated with lane-keeping when LDW is in use. The present study sought to examine the relationship between LDW, lane-keeping behavior, and concurrent cognitive load, as measured by performance on a secondary task. Participants drove a vehicle equipped with LDW in a demarcated lane on a closed-course test track with and without the LDW system in use over multiple sessions.
Technical Paper

Regional Level Crash Induced Injury Metrics Implemented within THUMS v4.01

2016-04-05
2016-01-1489
Crash reconstructions using finite element (FE) vehicle and human body models (HBMs) allow researchers to investigate injury mechanisms, predict injury risk, and evaluate the effectiveness of injury mitigation systems, ultimately leading to a reduced risk of fatal and severe injury in motor vehicle crashes (MVCs). To predict injuries, regional-level injury metrics were implemented into the Total Human Model for Safety (THUMS) full body HBM. THUMS was virtually instrumented with cross-sectional planes to measure forces and moments in the femurs, upper and lower tibias, ankles, pelvis (pubic symphysis, ilium, ischium, sacrum, ischial tuberosity, and inferior and superior pubic ramus), and the cervical, thoracic, and lumbar vertebrae and intervertebral discs. To measure accelerations, virtual accelerometers were implemented in the head, thoracic vertebrae, sternum, ribs, and pelvis. Three chest bands and an abdominal band were implemented to measure chest and abdominal deflection.
Journal Article

Full-scale Fire Tests of Electric Drive Vehicle Batteries

2015-04-14
2015-01-1383
Fires involving cars, trucks, and other highway vehicles are a common concern for emergency responders. In 2013 alone, there were approximately 188,000 highway vehicle fires. Fire Service personnel are accustomed to responding to conventional vehicle (i.e., internal combustion engine [ICE]) fires, and generally receive training on the hazards associated with those vehicles and their subsystems. However, in light of the recent proliferation of electric drive vehicles (EDVs), a key question for emergency responders is, “what is different with EDVs and what tactical adjustments are required when responding to EDV fires?” The overall goal of this research program was to develop the technical basis for best practices for emergency response procedures for EDV battery incidents, with consideration for suppression methods and agents, personal protective equipment (PPE), and clean-up/overhaul operations.
X